

Is dissolved oxygen in Tempe Town Lake mainly driven by abiotic factors? Marisol Juarez Rivera¹, Hilairy E. Hartnett¹

Central Arizona-Phoenix Long-Term Ecological Research CAP LTER

¹School of Earth and Space Exploration, Arizona State University

Research question

What is the dominant process driving oxygen super saturation at Tempte Town Lake?

Background

- Tempe Town Lake has been supersaturated with O₂ for ~70% of the year over the past 13 years
- 30% of the data is equal to or greater than 120% saturation

Figure 1. Monthly O₂ saturation state for TTL's surface water. The top and bottom of the box represents the 25th and 75th percentiles, respectively. Dotted line is the mean, n=44-53 data points per month. Data for water samples is overlaid in red.

- Dissolved oxygen (DO) is a property of lakes commonly measured to understand the main biologic processes at play
- But, abiotic processes such as heating and bubble injection can also drive O₃ sat. out of equilibrium (Fig. 2).

gas solubility \(\infty \) molecular weight, \(T \) , salinity

Figure 2. Biotic and abiotic processes affecting O_2 saturation at TTL.

• Therefore, it is important to quantify the effects of each process before interpreting DO measurements

Approach

Abiotic contributions of O₂ can be quantified using Ar as a tracer. Ar has similar solubility as O₂ and is biologically inert. It's concentration in water is only modified by abiotic processes

Figure 3. Top: Sampling location. Bottom: Water samples collected

- O₂ sat. state for the collected samples fall within the values for the past 12 years (Fig. 1)
- The highest supersaturation values occur in early spring when the lake's temperature is increasing and are closer to sat. equilibriumin the fall and early winter (Fig. 1, 4)
- The measured O₂ and Ar sat. anomalies range from -31.01 to $+75.07 \pm 0.04$ and -30.99 ± 0.06 to $+76.74 \pm 2.41$, respectively (Fig. 5)

Methods

- Water samples were collected from the surface in 10 mL glass volumetric flasks and set with 0.1% vol. of ZnCl₂
- O₂ and Ar were measured using Membrane Inlet Mass Spectrometry (MIMS)
- Gas saturation anomalies (deviations from equilibrium sat.) were calculated for O₂ and Ar using:

$$\Delta_{i}$$
 (%) = ((C_{i}/C_{i}^{*})-1) x 100

 $\Delta_i = \text{gas sat. state (\%), C}_i = \text{measured gas}$ concentrations, C_i*= equilibrium concentrations.

Results

Figure 4. Monthly temperature values for TTL's surface water. Data for water samples is overlaid in red.

Figure 5. Comparison of O₂ and Ar saturation anomalies.

• 12 of the 20 samples differ by $\leq 5\%$ and the largest percent difference is 16.53 % (Fig. 5)

5/16 6/16 10/16 10/16 10/16 10/16 10/17 10/17 10/17 10/17

Our results show that abiotic processes are the main drivers of the observed O₂ saturation

Results (continued)

Discussion

- The concentration of DO in the surface of TTL is mainly controlled by abiotic processes with modifications by respiration and photosynthesis
- This work suggests that the high supersaturation states observed for the past 12 years were also driven by abiotic processes.
- •Although abiotic processes are dominat we still see biotic influences on O₂ (Fig. 6)

Figure 6. Corrected O₃ saturation states.

 Photosynthesis and respiration affect the lake's oxygen balance but on the scale of a few percent

Summary

- DO concentrations for the past 12 years show that TTL is supersaturated with O₂ for approximately 70% of the year
- Ar was used to constrain abiotic contributions of O₂
- Our time series shows that Ar saturations track those of O₂ closely with the largest difference of 16.53 %
- These results show that abiotic processes are the main drivers of the observed O₂ saturation at Tempe Town Lake.

Future research

This work needs to be reproduced in other lakes to determine how abiotic processes influence their O₂ budget.