“Missed opportunities” in Central Arizona water management: Reconciling the local supply of and demand for science

Clea Senneville1,2, Kelli Larson1,2,4, Amber Wutich3, Tim Lant4,5, Meredith Gartin3,4, Dave White6,7, Susan Ledlow1,4, and Pat Gober2,4

http://dcdc.asu.edu

Overview

This is a study of the Decision Center for a Desert City (DCDC), a boundary organization in the Phoenix, Arizona water resource decision context, and its interactive simulation model, WaterSim. Greater Phoenix comprises a complex arrangement of institutions governing water resources in the face of climatic variation and rapid urbanization. The uncertainties surrounding sustainable water management necessitate effective exchanges within the science-policy arena. In order to characterize the relationship between the provision of science and stakeholders’ information needs, this study applies Sarewitz and Pielke’s (2007) “missed opportunity matrix” to interviews and focus groups with regional decision-makers through facilitated interactions with the WaterSim model. Specifically, this poster presents preliminary findings about the nature, extent, and type of information demanded (by policy professionals) and supplied (by ASU scientists) for water resource decision-making in the Phoenix area.

Methods: Content Analysis

Within the Decision Theater, individual interviews and 12 focus groups - consisting of water experts in data analysis, consulting, and policy from throughout Central Arizona - were facilitated in Fall 2006. WaterSim researchers attempted to discern stakeholders’ perceptions of the model, their satisfaction with the science presented, and its applicability to their particular decision-making needs. The resulting transcripts were coded for reconciling the supply of and demand for scientific information. The text analysis used the kappa measure to test for inter-coder reliability; all of the coding for the RSD variables presented here (not/demanded and not/supplied) yielded a score of .60 (good) or higher. Preliminary descriptive codes have also been applied to each of these 4 categories to reflect the types of water management information supplied and demanded (or not) by the model, as presented in the bar graphs at right.

Preliminary Findings: Information Supplied and Demanded

The RSD framework offers a way of analyzing research portfolios or science-policy boundary activities for their appropriateness according to the expectations and capacities of potential users of the information. Research participants most commonly noted their information needs, in relation to the type of information both included and excluded in WaterSim at the time of the focus groups.

Closing and Future Directions

Findings indicate a “mismatch” in the relationship between stakeholder demands for science and the provisions of science offered by DCDC and WaterSim. Immediate steps for this project is to systematically apply a “comparative overlay” to these four codes, to determine specific points of overlap and missed opportunities. In other words, this process would yield an understanding of the types of information demanded by decision-makers that is both supplied and not supplied, and the types of information supplied by the model that is both demanded and not demanded. The longitudinal aspect of WaterSim will undoubtedly provide a more complete medium through which to evaluate the relative capacities of the model to facilitate a supply-demand convergence, supportive of decisions better equipped to achieve beneficial societal outcomes.

For more information, contact: Clea.Senneville@asu.edu

References


WaterSim allows stakeholders to consider different scenarios of water availability and demand, based on the modified parameters of drought, climate change, population growth, land use, and water policy. Pictures left to right: inside the Decision Theater (http://www.decisiontheater.org/), during a presentation of WaterSim, and an example screen shot showing different model parameters.

The “missed opportunity matrix”

The upper right and lower left quadrants indicate where opportunities to connect science and decision-making have been missed. In order to understand how DCDC’s WaterSim is currently and could further meet information needs in decision-making, the next step is to overlap the four codes at center to highlight each cell of the matrix.

The upper right quadrant indicates where stakeholders benefit from WaterSim and DCDC research. The lower left quadrant indicates where not supplied, not demanded missed opportunity information science information not supplied by DCDC during the WaterSim presentation, nor wanted or demanded by policy professionals.

The middle left quadrant indicates where stakeholders demand information that is not included in the model. The middle right quadrant indicates where stakeholders demand information that is already included in the model, and the right lower quadrant indicates where stakeholders demand information that is not currently included in the model, but is desired by stakeholders.

The Type of Water Management Information Demanded and Supplied

Stakeholders most often commented on the data and assumptions comprising the model, exhibiting both a demand for different sources of information and initial assumptions, as well as a lack of demand and displeasure of certain assumptions and information sources provided. Regarding scale, participants stated that data specific to provider’s jurisdiction and short-term decision-making were absent from and desirable of the model; (WaterSim generates outputs for Maricopa County and offers a 2030 outlook). Also important to decision-makers but absent from the model was the inclusion of conservation policy and pricing adjustments. The projections of land use and population growth offered by the model and particular data assumptions were unwanted or contested by many participants.

The “missed opportunity matrix”

The upper right and lower left quadrants indicate where opportunities to connect science and decision-making have been missed. In order to understand how DCDC’s WaterSim is currently and could further meet information needs in decision-making, the next step is to overlap the four codes at center to highlight each cell of the matrix.

The upper right quadrant indicates where stakeholders benefit from WaterSim and DCDC research. The lower left quadrant indicates where not supplied, not demanded missed opportunity information science information not supplied by DCDC during the WaterSim presentation, nor wanted or demanded by policy professionals.

The middle left quadrant indicates where stakeholders demand information that is not included in the model. The middle right quadrant indicates where stakeholders demand information that is already included in the model, and the right lower quadrant indicates where stakeholders demand information that is not currently included in the model, but is desired by stakeholders.

The Type of Water Management Information Demanded and Supplied

Stakeholders most often commented on the data and assumptions comprising the model, exhibiting both a demand for different sources of information and initial assumptions, as well as a lack of demand and displeasure of certain assumptions and information sources provided. Regarding scale, participants stated that data specific to provider’s jurisdiction and short-term decision-making were absent from and desirable of the model; (WaterSim generates outputs for Maricopa County and offers a 2030 outlook). Also important to decision-makers but absent from the model was the inclusion of conservation policy and pricing adjustments. The projections of land use and population growth offered by the model and particular data assumptions were unwanted or contested by many participants.