FORAGING DECISIONS, BIRD COMMUNITY STRUCTURE AND RESIDENTIAL LANDSCAPES: FINDING THE LINKS

Susannah B. Lerman¹ and Paige S. Warren²

¹Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA
²Department of Natural Resources Conservation, University of Massachusetts, Amherst, MA

INTRODUCTION

Urbanization, as it transforms natural biotic systems into human-dominated landscapes, has become recognized as one of the greatest threats to bird diversity throughout the world. Emsen (1974) suggested that carrying capacity of urban environments is increased relative to wildland environments because of human subsidies. Numerous studies support this pattern of high densities and a decrease in bird diversity (Marzluff 2001). However, the processes underlying these patterns still remain unclear due to the lack of experimental studies in urban systems (Marzluff et al. 2001).

Together with Citizen Scientists, we evaluated why certain birds are able to persist within clearly defined residential habitat parameters. We conducted foraging experiments in Phoenix, AZ, to provide a mechanistic approach and potentially uncover some of the causal relationships between urbanization and biodiversity. Furthermore, we focused within residential landscapes to determine if specific designs potentially enable the persistence of a natural bird community. Ultimately, residential landscapes may provide mini refugia within urban areas, adding to their conservation value.

RESEARCH QUESTIONS

1. Are birds foraging in mesic designs with dense vegetation more efficient foragers than birds in xeric designs?
2. Does a perceived predation risk exist and if so, does it differ between mesic and xeric yards?

RESULTS

There was no significant difference between day 1 and day 2 of the experiment therefore we combined both days for further analyses. Birds demonstrated a significant difference in foraging behavior between mesic and xeric yards. (Repeated Measures ANOVA, F = 1.5, p = 0.0479, Figure 2a) with birds foraging in mesic yards exhibiting greater foraging efficiency. This suggests that competition for food resources is greater in these mesic landscapes. In addition, these conditions may make it possible for certain urban-adapted species to out compete the native, desert-adapted species. Predation risk was insignificant in both landscape designs (ANOVA, F = 0.0755, p = 0.7971 for Mesic and F = 0.1046, p = 0.752 for Xeric yards, Figure 2b and 2c respectively).

Figure 1. Examples of mesic and xeric landscapes with seed tray experiments. Red arrows point to seed trays either placed under a bush (protection from predation) or in the open (vulnerable from predation).

Figure 2. mANOVA results for testing foraging differences between landscape designs (2a) and microhabitats within mesic (2b) and xeric (2c) yards. Birds foraging in mesic yards were more efficient than birds foraging in xeric yards. However, microhabitat (testing for predation risk) did not differ between the two landscape designs. Standard error bars shown.

Figure 3. Examples of urban birds. Clockwise: Curve-billed Thrasher, House Finch, House Sparrow and Mourning Dove. The House Sparrow and Mourning Dove are highly efficient foragers and thus potentially compete with and or exclude Curve-billed Thrashers, House Finches and other desert birds from mesic landscapes (Shochat et al. 2004).

FORAGING BEHAVIOR DIFFERS BETWEEN MESC AND XERIC RESIDENTIAL LANDSCAPES

CONCLUSIONS

Our research suggests that competition for food resources is greater in mesic landscapes. In addition, these conditions may make it possible for certain urban-adapted species to out compete the native, desert-adapted species (Figure 3).

In arid cities, such as Phoenix, the availability of water encourages the persistence of high densities of exploitative and adaptive species within the lush, mesic landscapes. Because of the increased competition, individuals must optimize their foraging, thereby greater efficiency ultimately translates to higher survival and reproductive success.

Birds foraged in both landscape designs as though predation risk was low, despite the presence of domesticated predators like cats. This suggests that predation risk is not a major mechanism structuring urban bird diversity in Phoenix.

We recommend xeric landscape designs as a potential strategy for fostering a native bird community in future developments.

REFERENCES


Acknowledgements

We thank Eyal Shochat for help with study design, bird photos and advice. We also thank Naomi Lerman, Janet Spielmann, Michelle Forey, Wynne Potter, Jon Rinting, The Can Family, Paul Bann, Suze Plagge, The Evenson Family, and Olive St Lawrence for permission to conduct experiments on their yards. We also acknowledge the support of the UMass Amherst Organismic & Evolutionary Biology department and the Central Arizona-Phoenix Long-Term Ecological Research (CA-P LTER) for funding. We are grateful to the support of the National Science Foundation (NSF-N) and to the National Science Foundation and the U.S. Department of Agriculture for grants (DEB-0423704).