Legacy Effects of Prehistoric Farming: Isotopic Analysis of Maize Grown in Sediments from Hohokam Fields

Steve Swanson and Rebecca Calonico
Department of Anthropology, Arizona State University

Abstract
Maize was a staple crop in the prehistoric Southwest US. While prehistoric farmers practiced diverse agricultural techniques, fertilization was not practiced and over time nutrient depletion in fields may have caused reduced agricultural productivity. Remains of maize are ubiquitous in archaeological contexts, and may retain clues to the fertility of the fields in which they were grown. We conducted two maize grow-outs using sediments collected from different Holocene prehistoric agricultural field types along Cave Creek, north of Phoenix, Arizona. This poster reports the results of the grow out as well as elemental and isotopic analyses of the agricultural sediments and indigenous varieties of maize grown in them.

Study goals
Prehistoric agricultural practices that did not include fertilization or nitrogen fixation techniques would rapidly deplete nitrogen (N) available to plants in repeatedly used crop growing locations. In the prehistoric Southwest, repeated growing of maize over decades and centuries could have had severe impacts on the levels of available N in soil. Other studies have documented severe N depletion in prehistoric agriculture terraces after only decades of use. The goal of this study is to examine the legacy effects of prehistoric agricultural activities on soil nutrients, focusing primarily on N, the most critical soil nutrient for maize growth. Since maize is abundant in archaeological collections, we would like to know whether it has any utility in identifying prehistoric soil N depletion.

Sample collection and experiment design
Hoski Schaafhau was assisted us in the collection of sediment samples from distinct field types at three archaeological sites along Cave Creek. At each sampling location, we removed the upper 5cm of sediments in two or more small areas, and then collected approximately 15L in buckets. In the lab, sediment was sieved through 8mm mesh to remove large stones, then placed in 4L growing pots. Each sediment was divided into four treatments of 100%, 75%, 50% and 25% concentration by adding perlite. Three maize seeds were planted in each labeled pot, and 1L of reverse osmosis water applied 1-3 times a week. Since the plants were placed outdoors to better replicate natural growth conditions, they received occasional watering from natural precipitation.

Malting experiment
Dried maize leaves, corn, and sediment samples were ground in a ball mill using steel vials to a fine powder. Using a Sartorius Pro-11 micro-balance, samples were weighed and placed into tin capsules to prepare for carbon and nitrogen stable isotope analysis in the ASU-Goldwater Environmental Laboratory’s Gas-Chromatograph Isotope-Ratio Mass Spectrometer.

Growout result: weed counts and maize performance
Seed abundance in garden sediments
Plant growth in garden sediments

During the first grow out, we counted weeds that sprouted in our pots for each sample. The graph on the left shows these results. The sediments buried for several centuries (sample 1) have no seed bank. The grid garden sample has a lot of seeds relative to the other three samples. Perhaps the rock grids facilitate the trapping of seeds. Our plant height data do not show clear differences between the sediments, although the check dam sediments appeared to perform the best, and the buried sediments the worst. We do not believe these to be significant differences, however. Overall, the maize plants greatly underperformed our expectations for growth—they all grew slowly and poorly, were undernourished, and none fruited.

Conclusions
There are interesting differences between field types, reflecting both past and present biochemical and physical processes. The grid garden soils stand out from the other field types, with higher N concentrations and more abundant wild seeds. However, maize growth was best, as measured by average height of plants, in the check dam fields. For all fields, maize productivity was very poor. We hoped in this study to determine whether there were clear patterns in maize N uptake that could be related to N-depletion in soils. These preliminary results suggest that N depletion results in increased discrimination of N, although the experiment was not designed to determine the mechanisms responsible for this. There may be some utility in examining N abundance in prehistoric maize to detect N depletion in soils, but this would depend on the initial N abundance of the prehistoric fields the maize was grown in.

Acknowledgements
This research was funded by NSF grants to the ASU Urban Ecologis (IGERT). Hoski Schaafhau provided access and assistance for obtaining sediment samples at his thesis study sites, and provided maps and images for this poster. Linda Osborn and the Goldwater Environmental Laboratory provided invaluable assistance, patiently explaining the inner workings of complex lab equipment and isotopic research. Special thanks to Native Seeds/SEARCH, in Tucson, for preserving indigenous agriculture and providing us with traditional varieties of maize.