Comparing trophic dynamics in urban and desert ecosystems using arthropod communities on brittlebush (\textit{Encelia farinosa})

Wendy A. Marussich and Stanley H. Faeth, Department of Biology, Arizona State University, Tempe, AZ 85287-1501

Do trophic dynamics differ in urban vs. ‘natural’ systems? Is trophic structure controlled by ‘top-down’ (natural enemies) or ‘bottom-up’ (limiting nutrients) forces in these systems? To address these questions, we have established long-term arthropod monitoring experiments at two permanent LTER study sites (President’s House and Desert Botanical Gardens) and one natural desert preserve (Usery Mountain Park) on brittlebush plants. Brittlebush (\textit{Encelia farinosa}) was selected because it is a common native desert perennial that is often used in urban landscaping. We are sampling the arthropod community and plant damage once per month, applying a water treatment every two weeks, and measuring plant volume and biomass accumulation four times per year. Arthropods are being identified to family and feeding-guild. By using the LTER permanent sites we hope to link these experiments to other LTER core areas by quantifying changes in ecosystem function as functions of trophic complexity and patch type. Ultimately, we will combine our experimental results with a patch dynamic model to better understand how inter-patch differences in tropho-dynamics impact regional fluctuations in plants, herbivores, and predators.

EXPERIMENTAL DESIGN

- **3 sites**
 - President’s House
 - Desert Botanical Gardens
 - Usery Mountain Preserve
- **2 water treatments**
 - 5 liters / 2 weeks
 - no water added
- **4 exclosure treatments**
 - birds
 - ground predators
 - bird & ground predators
 - no exclosures
- **5 replicates**
- **120 plants total**

PROTOCOL

- **biweekly**
 - water treatment plot maintenance
- **monthly**
 - arthropod sampling
 - plant damage assessment
- **quarterly**
 - pruning
 - plant volume (m2)
 - biomass (g)

GUILD ANALYSIS

While trophic levels provide a good description of community organization, they are not sufficient for defining community structure and function. It is often useful to divide trophic levels into guilds, or groups of species exploiting similar resources in a similar manner. As guild membership is based solely on resource use and does not include taxonomic restrictions, it is especially useful when examining complex communities containing smaller organisms such as bacteria, protists, and invertebrates, which are often taxonomically difficult to identify. We are classifying the invertebrates found on brittlebush into guilds to better understand the types of communities that develop on brittlebush and how changes in top-down and bottom-up trophic dynamics affect community structure and function.

Endoparasites
- Aphididae (of aphids)

Parasites/Parasitoids
- Scelionidae (of spider+insect eggs)
- Eulophidae (of eggs and larvae)
- Mymaridae (of eggs)
- Encyrtidae (of Homoptera)
- Dryinidae (of Diptera pupae)
- Inostemmatinae (of Diptera larvae)

Leaf Chewing
- Gryllidae (crickets)

Gryllidae
- Chiroptera (of Diptera pupae)

** Opportunistic Omnivore**
- Cicadellidae (leafhoppers)

Sap Feeders
- Aphididae (aphids)

Sciaridae
- Fungus and root gnats

Acknowledgements

We would like to thank Amy DiIorio, Ian Hopkins, Diane Miller, and Christopher Putnam for their help sampling arthropods, sorting the samples, installing rings and cages, and monitoring the plots for damage. We would also like to thank Cinnamon Hayes and Alicia Cox for helping to plant the brittlebush, and Maggie Tseng for sorting and identifying the arthropod samples.