

OVERVIEW

- Urban heat island and landscape
- Challenges of valuing environmental / ecosystem services
- Abbott and Klaiber (2011) solution: utilizing within and between-neighborhood/time information to its full extent
- Implications for water policy

URBANIZATION: CHOICES AND CHALLENGES

- Green landscaping associated with large water use in arid environments like Phoenix
 - Provides numerous benefits: aesthetics, recreation, reductions in temperature
- Transformation of natural landscape to concrete and heat absorbing materials increases heat retention
 - For arid, warm climates these increase electric and water usage as well as reducing "comfort"
- Policymakers concerned with long-run availability of cheap water need information on the valuations of these competing effects
 - Nearly 75% of water use in Phoenix occurs outdoors!

HEDONIC PRICE REVIEW

- Homebuyers (or renters) view houses as "bundles" of desired characteristics and select a home to maximize their welfare given the constraints they face.
- If markets are reasonably competitive and in equilibrium then:
 - Willingness to pay of homeowners for a small change in an amenity can be recovered
- Environmental amenities can be viewed as capital assets yielding multiple flows of services

SPATIAL SCALE AND NON-MARKET SERVICES

- Services propagate over a range of spatial scales due to
 - Natural/physical conditions
 - Human perceptions
 - Institutional structure
- Some services are linked through physical processes, but vary over different spatial scales
 - E.g. Green landscaping and temperature
- Big problem: unobserved spatial variables are likely highly correlated with (dis) amenities of interest → Fixed Effects

9

SPATIAL FE APPROACHES

- BUT, FE estimation makes strong assumptions on the *scale(s)* of amenity capitalization relative to the *scale* of variation
 - If spatial effects are broader than the maximum extent of capitalization → traditional omitted variable bias.
 - If spatial effects are subsumed by maximum extent of capitalization → bias from recovery of partial effect or inability to detect an effect at all!

THE HAUSMAN-TAYLOR ESTIMATOR (1981)

- Define a "panel" as repeated transactions in a spatial (block group) and year combination (jt)
- Partition regressors:
 - Varying within panel (exogenous, endogenous) "fine" variables
 - Constant within panel (exogenous, endogenous) "coarse" variables
- Identify all "fine" variables using "within" variation.
- Identify *endogenous* coarse variables using exogenous "fine" variables as instruments
 - Exploit different scales of variation to use exogenous "fine" variables as essentially two different variables!

DATA

- 551,199 transactions between 1998 and 2004
 - Contain full suite of housing characteristics
 - Data on distances to CBD and highways, distances and proximity to parks, Census demographics
- o 1,646 Census 2000 block groups
 - 10,021 panels with data
- Prices deflated by Case-Schiller and converted to annual rents

13

INSTRUMENTS

- Temperature is correlated with elevation and density are these exogenous?
 - Form instruments using mean elevation, mean distance to subdivision open space, and mean subdivision open space adjacency

Hausman Test for Exogeneity		Correlation
Variable	p-value	w/Temperature
Adjacent subd. Open	0.3549	-0.1304
Subd open distance	0.145	0.266
Elevation	0.6295	-0.2789
Joint Test	0.326	

HT RESULTS (SEMI-LOG)

Variable	Estimate	Std Erra	z-stat
Within Panel Varying, Exogenous			
Adjacent subd. Open	0.0486	0.0035	13.9
Subd open distance	-0.0195	0.0083	-2.35
Elevation	0.1316	0.0212	6.2
Within Panel Invariant, Endogenous			
Temperature (block group)	-0.0360	0.0184	-1.96
Within Panel varying, Endogenous			
Square footage	0.0505	0.0010	52.09
Lot acres	0.3453	0.0229	15.09
# Rooms	-0.0156	0.0012	-13.58
# stories	-0.0744	0.0034	-22.18
# bathrooms	0.0465	0.0024	19.59
Age	-0.0093	0.0004	-25.62
Garage	0.0540	0.0030	18.04
Pool	0.0472	0.0011	41.47
Green landscaping (parcel)	0.0123	0.0014	8.86
Green landscaping (subdivision)	0.0832	0.0077	10.76

^aRobust standard errors calculated using 200 non-parametric clustered bootstraps

15

DISCUSSION

- Using the monthly mean rental price of \$1398
 - MWTP for reduction of 1 degree is \$50
 - MWTP for green parcel landscaping is \$17
 - MWTP for green neighborhood is \$116
- Important for policymakers to know household valuations for landscape and heat mitigation to design effective water policies
 - Substantial premium associated with these likely limits the effectiveness of simple rate changes
 - Suggests non-price changes are required to alter behavior

COMMENTS? • E-mail: klaiber.16@osu.edu	17
	18

19

A MODEL

Dimensions and Superscripts

i = house $j = block\ group$ 1 = endogenous 2 = exogenous

 $t = sale\ year$

$$P_{ijt} = \alpha_0 + \alpha_1 X_{ijt}^1 + \alpha_2 X_{ijt}^2 + \alpha_3 Z_{jt}^1 + \alpha_4 Z_{jt}^2 + \eta_{jt} + \epsilon_{ijt}$$

- X contains within-panel varying characteristics such as sqft, acreage, green lawns, pools, ...
 - Contains subdivision wide measures of green landscape
 - Many of these are likely confounded by omitted variables
- o Z contains characteristics that do not vary within panels such as census demographics, distances, etc.
 - Also contains block group temperature
- \circ η_{jt} are unobserved panel random effects

Model (Continued)

Define

$$\delta_{jt} = \eta_{jt} + \alpha_3 Z_{jt}^1 + \alpha_4 Z_{jt}^2$$

$$P_{ijt} = \alpha_0 + \alpha_1 X_{ijt}^1 + \alpha_2 X_{ijt}^2 + \delta_{jt} + \epsilon_{ijt}$$

- Fixed effects estimation cannot identify the marginal effects of Z¹
 - · Random effects can but cannot address omitted variable bias
- Need an approach that preserves identification of broad scale effects <u>and</u> accounts for potential omitted variables bias
 - Hausman-Taylor estimator

2

THE HAUSMAN-TAYLOR EST. - STEPS

Define panels based on {j,t} dimensions

$$P_{ijt} = \alpha_0 + \alpha_1 X_{ijt}^1 + \alpha_2 X_{ijt}^2 + \alpha_3 Z_{jt}^1 + \alpha_4 Z_{jt}^2 + \eta_{jt} + \epsilon_{ijt}$$

2. Use within (fixed effects) estimator to recover consistent estimates of α_0 , α_1 , α_2 and get consistent estimates of

$$\delta_{jt} = \eta_{jt} + \alpha_3 Z_{jt}^1 + \alpha_4 Z_{jt}^2$$

- 3. Get first-stage consistent estimates of α_3 and α_4 by regressing these "within" residuals on Z_{jt}^1 and Z_{jt}^2 .
- 4. Utilize the information in hand to estimate the variances of the error components and perform a GLS transformation on the regression

STEPS - CONTINUED

$$\widetilde{P}_{ijt} = \alpha_0 \widetilde{1}_{jt} + \alpha_1 \widetilde{X}_{ijt}^1 + \alpha_2 \widetilde{X}_{ijt}^2 + \alpha_3 \widetilde{Z}_{jt}^1 + \alpha_4 \widetilde{Z}_{jt}^2 + \widetilde{\epsilon}_{ijt}$$

Omitted variables are still in the transformed error term, but transformed to be homoskedastic and free of serial correlation.

5. Conduct an instrumental variables regression using the following instruments

$$\widehat{\boldsymbol{X}}_{ijt}^{1},\,\widehat{\boldsymbol{X}}_{ijt}^{2},\overline{\boldsymbol{X}}_{ijt}^{2},\,\widetilde{\boldsymbol{Z}}_{jt}^{2}$$

- Use fixed effects estimation for all "fine" variables
 Use variation in the panel mean of exogenous fine characteristics as instruments for endogenous "coarse" variables