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(tRIBS, lvanov et al. 2004) model used to perform forecasting assessments.
* Complexities in rainfall, soils, vegetation and topography are accounted through tRIBS.
* Parallel computations, based on domain decomposition, performed at a supercomputer.

spread between ensemble members is larger at large lead times. Except by some small-size,
snow-dominated basins, flood forecasting skill is not better than forecasted mean for lead times
greater than 30 minutes.

Hydrologic evaluation of different A-b combinations reveal significant differences in stream-
flow and distributed runoff among Z-R relations. Resulting errors in precipitation transmitted
to hydrologic results following power-law expressions.
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