Green Infrastructure and the Urban Forest: Thinking Outside the Planter Box

James DeRoussel RLA
Program Manager
Watershed Management Group
Let’s put a tree there!
What is Green Infrastructure?

• WMG: “constructed features that use living, natural systems to provide environmental services, such as capturing, cleaning and infiltrating stormwater; shading and cooling streets and buildings; and calming traffic.”

www.watershedmg.org
What is Green Infrastructure?

- Low Impact Development (LID)
- Integrated Water Management
- Water Sensitive Urban Design
- Best Management Practices for Stormwater Quality (BMP’s)

www.watershedmg.org
What is Green Infrastructure?

- Bioretention
- Traffic Chicanes
- Green Roofs
- Stormwater BMPs
- Permeable Paving
- Preservation of Natural Systems

www.watershedmg.org
Why Green Infrastructure?

- **Environmental Benefits**
 - Flood Control
 - Reduce Urban Heat Island
 - Carbon Sequestration
 - Water Quality
 - Remove Pollutants
Increased Runoff and Flooding
Increased Runoff and Flooding
Decreased groundwater recharge

Approximate decline in groundwater levels, 1940-1995

Decreased groundwater recharge

Santa Cruz River @ Tucson, 1904
Decreased groundwater recharge

Santa Cruz River @ Tucson, 1981
Decreased groundwater recharge
Urban Heat Island
Urban Heat Island
Urban Heat Island

Weather Research Forecasting Model
2 m air temperature simulations
1700 LST 14 July 2003
spatial resolution = 1 km

Source: Susanne Grossman-Clarke
Urban Heat Island

<table>
<thead>
<tr>
<th>In Sun:</th>
<th>In Shade:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass: 91.0° F</td>
<td>Grass: 64.1° F</td>
</tr>
<tr>
<td>Soil: 91.0° F</td>
<td>Soil: 56.2° F</td>
</tr>
<tr>
<td>Litter: 101.1° F</td>
<td>Litter: 60.6° F</td>
</tr>
<tr>
<td>Rock: 131.8° F</td>
<td>Rock: Unmeasured; nearby Cement 76.9° F</td>
</tr>
</tbody>
</table>

3:50 p.m. on May 19, 2010
Park and University
Non-Point Source Pollution
Non-Point Source Pollution
Non-Point Source Pollution
Soils and Bioretention

Source: Scheyer, 2005
Soils and Bioretention

Source: Scheyer, 2005
Soils and Bioretention

The Soil Food Web

First trophic level: Photosynthesizers
- Plants: Shoots and roots
- Organic Matter: Waste, residue and metabolites from plants, animals, and microbes

Second trophic level: Decomposing Mutualists
- Nematodes: Root-feeders
- Fungi: Mycorrhizal fungi, Saprophytic fungi

Third trophic level: Shredders, Predators
- Arthropods: Shredders, Predators
- Nematodes: Predators
- Protozoa: Amoebae, flagellates, and ciliates

Fourth trophic level: Higher level predators
- Bacteria:
- Birds:
- Animals:

Fifth & higher trophic level: Higher level predators

Source: Scheyer, 2005
Soils and Bioretention
Soils and Bioretention

Labile Carbon

<table>
<thead>
<tr>
<th></th>
<th>Native</th>
<th>Urban</th>
<th>Rain garden</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg C/g soil</td>
<td>1.5</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Organic Matter

<table>
<thead>
<tr>
<th></th>
<th>Native</th>
<th>Urban</th>
<th>Rain garden</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Microbe Population

<table>
<thead>
<tr>
<th></th>
<th>Native</th>
<th>Urban</th>
<th>Rain garden</th>
</tr>
</thead>
<tbody>
<tr>
<td>ug C/g soil</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: Pavao-Zuckerman, 2013
Soils and Bioretention

Activity in Response to Metals Addition

Source: EPA

Source: Pavao-Zuckerman, 2013
Soils and Bioretention

TABLE 1 LABORATORY AND ESTIMATED BIORETENTION

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Removal Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Phosphorus</td>
<td>70%-83%</td>
</tr>
<tr>
<td>Metals (Cu, Zn, Pb)</td>
<td>93%-98%</td>
</tr>
<tr>
<td>TKN</td>
<td>68%-80%</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>90%</td>
</tr>
<tr>
<td>Organics</td>
<td>90%</td>
</tr>
<tr>
<td>Bacteria</td>
<td>90%</td>
</tr>
</tbody>
</table>

Source: ¹Davis et al. (1998)
²PGDER (1993)
Why Green Infrastructure?

• Environmental Benefits
 • Flood Control
 • Reduce Urban Heat Island
 • Carbon Sequestration
 • Water Quality
 • Remove Pollutants

www.watershedmg.org
Gray Infrastructure vs. Green Infrastructure

www.watershedmg.org
Gray Infrastructure

Alters pre-development hydrology:

• Increased runoff

• Remote, large scale retention/detention results in high maintenance and wasted space

• Decreased infiltration

• Downstream flooding

• Erosion/Sedimentation

www.watershedmg.org
Green Infrastructure

Mimics pre-development hydrology:

• Local micro-retention
• Decreases runoff
• Increased infiltration and local soil moisture
• Reduced downstream flooding and erosion
• Reduced burden on public storm water systems

Photo Credit: Rainwater Harvesting for Drylands and Beyond, Lancaster

www.watershedmg.org
Why Green Infrastructure?

- **Environmental Benefits**
 - Flood Control
 - Reduce Urban Heat Island
 - Carbon Sequestration
 - Water Quality
 - Remove Pollutants

- **Livability / Quality of Life**
 - Shade
 - Traffic Calming
 - Increased Property Values
 - Crime Reduction
 - Community Building

www.watershedmg.org
Functional Goals of Green Infrastructure

- Mimic Pre-Development Hydrology → Reduce Flooding
- → Reduce Flooding and Harvest Storm →
- → Increase Infiltration and Local Soil Moisture
- → Support Urban Forest and Reduce Urban Heat Island →
- → Increase Livability of Cities!
- Decrease up-front and lifetime project costs
Why Green Infrastructure?

- **Environmental Benefits**
 - Flood Control
 - Reduce Urban Heat Island
 - Carbon Sequestration
 - Water Quality
 - Remove Pollutants

- **Livability / Quality of Life**
 - Shade
 - Traffic Calming
 - Increased Property Values
 - Crime Reduction
 - Community Building

- **Economic Benefits**
 - Reduce energy consumption
 - Extend life of infrastructure
 - Reduce cost of new construction
Costs of Green Infrastructure

Retrofitting:
• G.I. retrofitting slightly more costly than rehabilitating of conventional infrastructure
• G.I. retrofitted incrementally can spread cost over long period of time
• Savings realized in long term operation and maintenance

New Construction:
• G.I. often 10-20% less costly than conventional infrastructure
• G.I. less costly in lifetime operation and maintenance
• Secondary and ‘trickle up’ economic benefits

Redevelopment = Opportunity

Source: Natural Resources Defense Council
Costs of Green Infrastructure

Why GI/LID makes $ sense:

- Reduced street widths = less pavement, curb and gutter
- Bioretention = fewer costly detention basins = less piped conveyance = reduced burden on public stormwater system
- Reduced lot sizes = reduced grading and building prep = more lots available for sale
- Preserving natural systems = reduced landscape costs = increase property values
- Harvested Storm water = Reduced Irrigation Demand = Sustainable Urban Forest

www.watershedmg.org
Why Green Infrastructure?

- **Environmental Benefits**
 - Flood Control
 - Reduce Urban Heat Island
 - Carbon Sequestration
 - Water Quality
 - Remove Pollutants

- **Livability / Quality of Life**
 - Shade
 - Traffic Calming
 - Increased Property Values
 - Crime Reduction
 - Community Building

- **Economic Benefits**
 - Reduce energy consumption
 - Extend life of infrastructure
 - Reduce cost of new construction
Tools for Green Infrastructure

Curb Cuts

www.watershedmg.org
Tools for Green Infrastructure

Curb Cores

www.watershedmg.org
Tools for Green Infrastructure

Street-side Basins

www.watershedmg.org
Tools for Green Infrastructure

Street-side Basins

www.watershedmg.org
Tools for Green Infrastructure

Street-side Basins

www.watershedmg.org
Tools for Green Infrastructure

Chicanes

www.watershedmg.org
Tools for Green Infrastructure

Street-width reduction

www.watershedmg.org
Tools for Green Infrastructure

Street-width reduction

www.watershedmg.org
Tools for Green Infrastructure

Traffic Circles

www.watershedmg.org
Tools for Green Infrastructure

www.watershedmg.org
Tools for Green Infrastructure

Pocket Parks

www.watershedmg.org
Tools for Green Infrastructure

Parking Lot Retrofits

www.watershedmg.org
Tools for Green Infrastructure

Parking Lot Retrofit

www.watershedmg.org
Tools for Green Infrastructure

Parking Lot Retrofit

www.watershedmg.org
Tools for Green Infrastructure

Bioretention

www.watershedmg.org
Tools for Green Infrastructure

Bioretention & Urban Forests

![Image of urban forest](image)

<table>
<thead>
<tr>
<th></th>
<th>CO$_2$ Sequestered (kg/tree)</th>
<th>Aboveground Biomass (kg/tree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin tree</td>
<td>1754.2</td>
<td>745.7</td>
</tr>
<tr>
<td>Non-basin tree</td>
<td>678.0</td>
<td>288.2</td>
</tr>
</tbody>
</table>

www.watershedmg.org
Best Practices

- Utility placement and setbacks
- Runoff Management
- Planting – Right Plant, Right Place
- Overflow
- Sediment Management
- Maintenance, Maintenance, Maintenance!!!
Best Practices

- Maintenance, Maintenance, Maintenance!!!
Best Practices

- Maintenance, Maintenance, Maintenance!!!
Best Practices

- Maintenance, Maintenance, Maintenance!!!
Upcoming Retrofits

Green Infrastructure Retrofits

Tucson:
Ward 1 Council Office
April 24, 2013
Upcoming Retrofits

Green Infrastructure Retrofits

Phoenix:
Sky Harbor Neighborhood
April 21, 2013

Roosevelt Row Neighborhood
April 27, 2013
James DeRoussel RLA
Program Manager
Watershed Management Group
520-396-3266
jderoussel@watershedmg.org