Community-Based Green Infrastructure in Arizona’s Public Rights-of-Way

James DeRoussel RLA Program Manager Watershed Management Group
Mission:

WMG develops and implements community-based solutions to ensure the long-term prosperity of people and health of the environment. We provide people with the knowledge, skills, and resources for sustainable livelihoods.
PROGRAMS:

- Demonstration Sites
- Co-Op
- Schoolyard Program
- Green Streets
- Technical Trainings

International

Soil & Water Conservation
Sanitation
Green Streets – Green Neighborhoods

Goal:
Help cities improve environment & quality of life through integrated Green Infrastructure.

Method:
- Use GI to address disparate urban problems
- Build community leadership
- Empower residents with hands-on skills and education
- Develop technical and educational resources

www.watershedmg.org
What is Green Infrastructure?

- Low Impact Development (LID)
- Integrated Water Management
- Water Sensitive Urban Design
- Best Management Practices for Stormwater Quality (BMP’s)

www.watershedmg.org
What is Green Infrastructure?

- WMG: “constructed features that use living, natural systems to provide environmental services, such as capturing, cleaning and infiltrating stormwater; shading and cooling streets and buildings; and calming traffic.”

Photo: Dave Elkin, City of Portland

www.watershedmg.org
What is Green Infrastructure?

• Bioretention
• Traffic Chicanes
• Green Roofs
• Stormwater BMPs
• Permeable Paving
• Preservation of Natural Systems

www.watershedmg.org
Who designs Green Infrastructure?

- Engineers
- Landscape Architects
- Architects
- Urban Planners
- Policy Makers
- Developers
- Contractors

What about?

- Maintenance staff
- Residents and neighbors
- Business owners

www.watershedmg.org
Why Green Infrastructure?

• Livability / Quality of Life
 • Shade
 • Traffic calming
 • Property values
 • Crime reduction
 • Community building

• Environmental Benefits
 • Water quality
 • Air quality
 • Flooding
 • Urban heat island
 • Wildlife habitat

www.watershedmg.org
Flooding
Non-point source pollution
Urban Heat Island
Limited water resources
Functional Goals of Green Infrastructure

• Harvest Storm Water
• Increase Infiltration and Recharge
• Prevent Flooding
• Create Shade/Reduce Urban Heat Island
• Increase Water and Air Quality
• Decrease up-front and lifetime project costs
Bioretention & Water Quality

- Sedimentation
- Filtration
- Adsorption
- Uptake
- Microbial activity
- Volatilization
Gray Infrastructure vs. Green Infrastructure

www.watershedmg.org
Gray Infrastructure

Alters pre-development hydrology:

- Increased runoff
- Remote, large scale retention/detention results in high maintenance and wasted space
- Decreased infiltration
- Downstream flooding
- Erosion/Sedimentation

www.watershedmg.org
Green Infrastructure

Mimics pre-development hydrology:

• Local micro-retention

• Decreases runoff

• Increased infiltration and local soil moisture

• Reduced downstream flooding and erosion

• Reduced burden on public storm water systems

[Photo Credit: Rainwater Harvesting for Drylands and Beyond, Lancaster]

www.watershedmg.org
Why Green Infrastructure?

- Livability / Quality of Life
 - Shade
 - Traffic calming
 - Property values
 - Crime reduction
 - Community building

- Environmental Benefits
 - Water quality
 - Air quality
 - Flooding
 - Urban heat island
 - Wildlife habitat

- Economic Benefits
 - Reduce energy consumption
 - Extend life of infrastructure
 - Reduce cost of new construction

www.watershedmg.org
Costs of Green Infrastructure

Retrofitting:
• G.I. retrofitting slightly more costly than rehabilitating of conventional infrastructure
• G.I. retrofitted incrementally can spread cost over long period of time
• Savings realized in long term operation and maintenance

New Construction:
• G.I. often 10-20% less costly than conventional infrastructure
• G.I. less costly in lifetime operation and maintenance
• Secondary and ‘trickle up’ economic benefits

Redevelopment = Opportunity

www.watershedmg.org

Source: Natural Resources Defense Council
Tools for Green Infrastructure

Curb Cuts

www.watershedmg.org
Tools for Green Infrastructure

Curb Cores

www.watershedmg.org
Tools for Green Infrastructure

Chicanes

www.watershedmg.org
Tools for Green Infrastructure

Street-width reduction

www.watershedmg.org
Tools for Green Infrastructure

Traffic Circles

[Diagram of a traffic circle with labels for various components such as Manhole access, Rock Slope, Tree Planting Shelf, Rip Rap, and Small native tree.]

www.watershedmg.org
Case Studies Across Arizona

- Palo Verde Neighborhood (Tucson)
- Burns Residence (Tucson)
- Fry Boulevard (Sierra Vista)
- Lake Havasu City Aquatic Center
- Primera Iglesia (Phoenix)

www.watershedmg.org
Palo Verde Neighborhood
Tucson, AZ

- Client/Project Owner: Private homeowners
- Funding: Private
Palo Verde Neighborhood
Tucson, AZ

- Public right-of-way
- Mid-town Tucson

www.watershedmg.org
Palo Verde Neighborhood
Tucson, AZ
Palo Verde Neighborhood
Tucson, AZ

NOTES:
1. CURB CORES MUST HAVE A MINIMUM OF 5' SEPARATION.
2. CURB CORES MUST BE A MINIMUM OF 5' FROM DRIVEWAY APRON.
3. CURB CORES MUST BE A MINIMUM OF 20' FROM ALL CORNERS & A MINIMUM OF 50' BACK OF CORNERS WITH STOP SIGNS.

1 COT DOT STANDARD DETAIL
WATER HARVESTING CURB CORING DETAIL
City of Tucson requires maintenance agreements from property owners for GI within the public right-of-way.
Palo Verde Neighborhood
Tucson, AZ
Palo Verde Neighborhood
Tucson, AZ

Before

www.watershedmg.org
Palo Verde Neighborhood
Tucson, AZ

After

www.watershedmg.org
Burns Residence
Tucson, AZ

- Client/Project Owner: Private homeowner
- Funding: Private/ADEQ Grant Subsidy

www.watershedmg.org
Burns Residence
Tucson, AZ

Before
Burns Residence
Tucson, AZ

During – Contractor Excavation
Burns Residence
Tucson, AZ

During – Volunteer Workshop (fine grading, rip-rap, planting)
Burns Residence
Tucson, AZ

During – Volunteer Workshop (mulch, cleanup)

www.watershedmg.org
Burns Residence
Tucson, AZ

After

www.watershedmg.org
Burns Residence
Tucson, AZ

www.watershedmg.org
Client/Project Owner:
City of Sierra Vista

Funding:
Walton Family Foundation
Fry Blvd.
Sierra Vista, AZ
Fry Blvd.
Sierra Vista, AZ
Fry Blvd.
Sierra Vista, AZ
Fry Blvd.

Sierra Vista, AZ
Fry Blvd.
Sierra Vista, AZ

www.watershedmg.org
Fry Blvd.
Sierra Vista, AZ

www.watershedmg.org
Fry Blvd.
Sierra Vista, AZ
Fry Blvd.
Sierra Vista, AZ
Fry Blvd.
Sierra Vista, AZ
Fry Blvd.

Sierra Vista, AZ

www.watershedmg.org
Aquatic Center
Parking Lot

Lake Havasu City, AZ

• Client/Project Owner:
 Lake Havasu City, Public Works
• Funding:
 ADEQ Water Quality Grant for Green Infrastructure
Lake Havasu impacted by urban runoff, sedimentation and reduced water quality
• Heavily trafficked parking lot drains directly to Pima Wash, Lake Havasu
STORMWATER CALCULATIONS

EXISTING PARCELS LOT:

1. PERVIOUS VEHICULAR AREA = 4,456,585 SQ. FT.
 - 45,000 SQ. FT. X 1 RAAN X 7 RAAN = 30,000 GALLONS PER 1 RAAN

2. LANDSCAPE ISLANDS AND PATIO = 10,000 SQ. FT.
 - 6,000 SQ. FT. X 1 RAAN X 7 RAAN = 42,000 GALLONS PER 1 RAAN
 - 4,000 SQ. FT. X 1 RAAN X 7 RAAN = 28,000 GALLONS PER 1 RAAN

TOTAL STORMWATER RUNOFF = 73,000 GALLONS PER 1 RAAN

Does not include stormwater contributions from surrounding buildings and adjacent landscape.

EXISTING CONDITIONS
STORMWATER CALCULATIONS

EXISTING PLAINS LILAC:

- PAVED WOODED AREA = 4,100 SQ. FT.
 4,100 SQ. FT. X 0.18 GALLONS PER SQ. FT. X 0.8 = 674 GALLONS

- LANDSCAPE MEDIAN AND ISLANDS = 1,605 SQ. FT.
 1,605 SQ. FT. X 0.14 GALLONS PER SQ. FT. X 0.8 = 186 GALLONS

TOTAL STORMWATER RUNOFF = 860 GALLONS PER FT. RAIN

DOES NOT INCLUDE STORMWATER CONTRIBUTED FROM SURROUNDING BUILDINGS AND URBAN LANDSCAPE.

PROPOSED IMPROVEMENTS:

- AREA A WATER HARVESTING BASIN = 1,475 CU. FT. (14 FT. DEPTH)
 1,475 CU. FT. X 0.74 GALLONS PER CU. FT. X 0.8 = 798 GALLONS

- AREA B WATER HARVESTING BASIN = 1,680 CU. FT. (16 FT. DEPTH)
 1,680 CU. FT. X 0.74 GALLONS PER CU. FT. X 0.8 = 1,110 GALLONS

TOTAL STORMWATER RETENTION = 1,908 GALLONS

DOES NOT ACCOUNT FOR IMPACT ON STORMWATER DUE TO SOIL INFILTRATION.

PLANTING SCHEDULE

<table>
<thead>
<tr>
<th>PLANTING SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>SHRUBS</td>
</tr>
<tr>
<td>PLANTS</td>
</tr>
<tr>
<td>TREE BARK</td>
</tr>
</tbody>
</table>

PLANTING PLAN

SCALE: 1" = 10"
Aquatic Center
Parking Lot
Lake Havasu City, AZ

- Asphalt cut and removed
- Flush curb and wheels stops

www.watershedmg.org
Aquatic Center Parking Lot

Lake Havasu City, AZ

- Native grasses and trees
- Crushed rock mulch

www.watershedmg.org
Aquatic Center Parking Lot

Lake Havasu City, AZ

- Six months post-construction

www.watershedmg.org
Aquatic Center
Parking Lot
Lake Havasu City, AZ

- Concrete channel drains parking lot to Pima Wash at bottom end
• Concrete channel removed and replaced with bio-retention basin
Concrete channel removed and replaced with bio-retention basin, planted with native grasses and trees, armored with rock
Aquatic Center Parking Lot

Lake Havasu City, AZ

- Six months post-construction
Aquatic Center
Parking Lot
Lake Havasu
City, AZ

www.watershedmg.org
• Client/Project Owner: Primera Iglesia Methodist Church
• Funding: ADEQ Water Quality Grant for Green Infrastructure
Primera Iglesia
Phoenix, AZ

www.watershedmg.org
Primera Iglesia
Phoenix, AZ

www.watershedmg.org
Primera Iglesia
Phoenix, AZ

www.watershedmg.org
Central Park’s Oasis Project
at Primera Iglesia Metodista Unida

Join one of these hands-on workshops to get involved!

Friday, October 21
8:00 AM – 1:00 PM

Saturday, October 22
8:00 AM – 1:00 PM

We will:
• Create earthen water harvesting features
• Plant native trees, shrubs and wildflowers
• Learn about sustainable landscaping techniques

The Oasis Project will harvest rainwater from streets and rooftops in order to:
• grow native shade trees & desert plants
• create habitat
• beautify streets and yards
• build community

Del Parque Central
Proyecto Oasis
la Primera Iglesia Metodista Unida

Unite a una de estos talleres prácticos para involucrarte!

Viernes, Octubre 21
8:00 AM – 1:00 PM

Sábado, Octubre 22
8:00 AM – 1:00 PM

Nosotros:
• Crear sistemas de cosecha agua con tierra
• Plantar árboles nativos, arbustos y flores silvestres
• Aprende de técnicas sostenibles de arquitectura paisaje

El Proyecto Oasis cosechará agua de lluvia de calles y techos para:
• Crecer sombra nativa de árboles y plantas desérticas
• Crear hábitat
• Enlumecer calles y patios
• Construir comunidad

All workshops will take place at Primera Iglesia Metodista Unida, 701 S. 1st St. To sign up or for more information, contact Tony Syracuse, 520-396-3266 or tsyracuse@watershedmg.org.

Todos los talleres tomarán lugar en la Primera Iglesia Metodista Unida, 701 S. 1st St. Para apuntarse o para más información, contacte Joe Silins, 520-396-3266 or jsilins@watershedmg.org.
Primera Iglesia
Phoenix, AZ
Primera Iglesia

Phoenix, AZ
Primera Iglesia
Phoenix, AZ
Primera Iglesia
Phoenix, AZ
Primera Iglesia
Phoenix, AZ

www.watershedmg.org
Technical Training in Community-Based Green Infrastructure

March 15-16, 2013 Tucson, AZ

$120 Registration (before February 18)
$110 WMG Alumni/AzASLA

CEU’s available to ASLA

www.watershedmg.org
...thank you!

James DeRoussel RLA
Program Manager
Watershed Management Group
520-396-3266
jderoussel@watershedmg.org

www.watershedmg.org